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The output statistics of a laser anemometer operating in a low particle density are 
discussed. A rigorous derivation is given for the influence of two popular data-handling 
algorithms on these statistics. I n  particular it is shown that the measured statistics 
can differ from those of the flow statistics and from the particle-arrival statistics. The 
variables that control the statistical regime are derived and quantitative estimates 
are given for their ranges of influence. 

The first system discussed is a sample-and-hold system where the output is a 
piecewise-continuous signal obtained by holding the last processor measurement until 
a new one is obtained. The second system is one where an attempt is made to store 
all the measurements for processing, but which contains a rate-limiting device. 
Because of this device, some measurements may be lost when the particle rate is high. 
This system is referred to  as a saturable system. 

I n  both cases i t  is found that the statistics of the output depend on the product 
of the mean particle rate and the flow correlation time as well as the flow statistics. 
The statistics of the saturable system also depend on the ratio of the mean particle 
rate to the maximum rate a t  which measurements can be accepted by the system. 
Because of this, the statistics of both systems depend on the particle density. 

Attainable conditions are demonstrated, where the output velocity measurement 
statistics are essentially identical with the flow statistics. 

1. Introduction 
A laser anemometer detects the scatteredlight from macroscopic particles suspended 

in a flow as they pass through a probe volume. The processing schemes used for the 
scattered signals can be divided in two groups, namely single-particle velocity 
processors and many-particle velocity processors. The last group of processors deal 
with continuous signals and will work only if the number of particles in the measuring 
volume is large. Under certain conditions they can give the instantaneous velocity 
of the flow, from which mean values and other statistics can be deduced (George & 
Lumley 1973 ; Lading & Edwards 1975). An ideal single-particle velocity processor 
can detect the velocity of every particle passing the probe volume, whatever the 
particle density. These processors should be much more flexible than the many-particle 
velocity processor. The data obtained by the single-particle processor are random 
samples of the flow velocity. The sample rate of a given velocity will, in general, 
depend on the velocity. 
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I n  an ideal situation, the particle flow rate is proportional to the speed. I n  a paper 
of McLaughlin & Tiedermann (1973) it was pointed out that  this would give a bias 
in the measured mean velocity if a simple arithmetic average was performed. I n  a 
later paper by Giel & Barnett (1979) the existence of this bias was questioned, based 
mainly on a lack of experimental verification. I n  other reports, such as that of 
Stevenson et al. (1980), the bias was experimentally verified but seemed to depend 
on the particle concentration and vanished in the limit of high particle densities. The 
last effect will be shown to be due to  the fact that  the data-handling system was 
saturated a t  high particle rates; a case described qualitatively by Edwards (1979, 
1981) and Giel & Barnett (1979). Similar ‘saturation’ results were obtained by 
Erdmann & Tropea (1981) in their detailed computations on ‘ controlled’ processors. 

This paper is, in part, an attempt to reconcile some of the confusion existing about 
the measurement of the particle statistics. I n  it, we show how the data-handling 
system can strongly influence the results of an experiment. For the two systems 
examined, we derive the experimentally accessible parameters that  control the 
statistics of the output, and the asymptotic limits of behaviour of the statistics and 
estimates of the range of parameter values where the asymptotic behaviour is 
observed. 

I n  an actual experiment, the mean sampling rate of each velocity is a complicated 
function of the system parameters. For instance, the geometry, seeding method, and 
processor electronics can all affect the sampling rate. Here, we formally divide the 
laser anemometer system into two parts: 

(i) The initial processor. This is the device that makes the individual measurements. 
Usually this is a ‘counter ’. I t s  settings, along with the geometry, determines the input 
particle statistics. I n  this paper, the input processor is assumed to have no 
measurement error and no reset (dead) time. For clarity of presentation, i t  will 
initially be assumed that the mean output rate from the initial process, for any 
velocity, is the particle density times the measurable volume swept through the 
measurement region per unit time by that velocity. This restriction will be relaxed 
in $3. 

(ii) Data-handling processor. This is the part of the system that operates on the 
initial processor data to produce a system output. Two types of data-handling schemes 
are examined. The first is the sample-and-hold processor - a pseudo-analog device 
wherein the result of the last successful measurement is held until the next success- 
ful measurement. The output of the sample-and-hold is time-averaged. The second 
processor examined is a data-handling system with a ‘dead’ time. This will be 
denoted a ‘saturable’ system. A counter with a significant reset time or a data- 
storage buffer with a fine acquisition.rate are typical examples of such a system. 
Note that a real counter is modelled as an ideal counter with no dead time followed 
by a dead time. 

Both kinds of data-handling system are in use. However, their effect on the output 
statistics was heretofore not well understood, although the qualitative behaviour a t  
some asymptotes has been discussed in the literature. Here we derive a rigorous 
framework within which the problems can be examined. I n  both cases, the form of 
the velocity probability density for the output will be derived. These will result from 
the computation of conditional probabilities, since the probability of seeing a given 
velocity measurement in the output, at a given time, is a function of the history of 
the system. All the mean moments of the output velocity can be computed from this 
probability density. 

For the two systems described here, a t  the extreme of very low particle density, 
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the output statistics will be shown to tend to  those of the ‘individual-realization’ 
system described first by McLaughlin & Tiedermann (1973) and extended to  three 
dimensions by Buchhave (1976). At the other extreme, high particle density, the,, 
statistics will be shown to tend toward an ‘unbiased’ system. More precise 
definitions of these terms will be given below. 

2. The sample-and-hold processor 
The output of a sample-and-hold processor can be described in mathematical terms 

by 
W )  = Zv&[i(t), 

i 

where 6( t )  is the output velocity a t  the time t ,  and ws 
when the last particle was measured. &(t)  is given by 

1 
0 otherwise. 

(ti < t < ti+l), 
&-At) = { 

is the velocity at the time ti 

All velocities are considered to be vectors unless otherwise noted. 
The probability density function for 6(t) ,  here denoted g S H ( t ? ) ,  can be found by 

summing the time average of all the & which have the velocity 6. This gives formally 

1 -- - c (ti+,--& 
TA vi-6 

(3) 

By averaging (3) over all times of arrivals and over all velocities different from 6, 
(3) becomes r m  

where p l (6 )  A6 is the probability per unit time for the arrival of a particle with the 
velocity 4, and ~(716) is the conditional probability density for the time 7 between 
two following particles given the velocity 6 of the first one. ( q s H ( 8 ) )  is the probability 
of the output of the sample-and-hold detector being d. 

The expected value of any function of 4, say F(4), can then be found from (4) : 

where the summation is taken over all possible velocities. 
In  order to calculate (4), the statistics of the particles must be known. Since the 

positions of the particles are independent and uniformly distributed, the probability 
for the arrival of two particles a t  the times t ,  and t ,  with the velocities w1 and v, will 
be conditionally independent, i.e. 

(6)  ti, t,, vi, vz) = P A ( ~ ~ , W ~ ) P A ( ~ ~ , V , )  

where pA(t l ,  wl) is the conditional probability for the arrival of a particle in the time 
interval ( t l ,  t ,  +At) with the velocity v1 given by 
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a(u)  is the measurable volume of fluid swept through the measurement volume per 
unit time if the velocity is u. I n  general, a is a very complicated function of the velocity 
(see Buchhave 1975). It can depend on the flow angle and on the magnitude of the 
velocity in a nonlinear fashion. The quantity a is a function of time through the 
velocity u(t) .  We will occasionally invoke this implicit dependence by writing a(t). 
If a is written with no argument i t  should be understood to be a(v) .  

Note that a is positive-definite. Thus a flow with a zero mean velocity will not have 
a zero mean value of a. 
8 is the volume of our world (box normalization). The number of particles in the 

box is denoted by M ,  and i t  is assumed that they all arrive within the time interval 
(0, T,). The relations between M ,  8 and T, are 

where p is the particle density. As usual 8, M and T, will not appear in the expression 
for the expected values of physical quantities. 

2.1. Calculation of p ,  

The probability per unit time for the arrival of a particle with velocity v, pl(v) Av, 
is proportional to the product of the probability p ( v ) ,  for a velocity v existing, and 
the probability a ( v ) / ( a )  of measuring v if the velocity is v. 

2.2. Calculation of p(T1v) 

From the condition that gave (6) and from (7 )  it can be deduced that the probability 
for the arrival of n particles in a time interval ( t , ,  t z ) ,  given the velocity in the same 
time interval, follows a Poisson distribution : 

where N(t , - t , )  = p a(t') dt'. SI: 
The expression N ( t , - t , )  is the expected number of particles swept through the 
measurement volume between t, and t,. The conditional probability p ( ~ /  w) for the 
time T between two following particles, given the velocity of the first particle, is equal 
to the probability of no particle arrival in the time interval (0, T ) ,  and the arrival of 
a particle at the time T given the velocity at 0 was v. This gives (up to  a normalization 
constant) 

p ( ~  I v) AT = (pa(7) e-N(T) Iv) AT. 

Now that we have an expression for ~ ( T I v ) ,  (gsH(6)) can be computed from (4) as 

The normalization constant Q, can be shown to be l / p ( a ) ,  thus (gsH(6)) is given 

co 
(gsH(6)) = pa(6) p ( 6 )  5   pa e-N(7) I 6) dT. 
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Integrating (12a) by parts (noting that pa d7 is dN), an alternative form is found : 

The integrand is the probability of there being no measurement in the time 7 if the 
initial velocity was 4. The expected value in the integrand can thus be computed by 
knowing the probability for the expected number of particles N(7)  being swept 
through the measurement volume in time 7, if the initial velocity was 8:  

rco 

The probability of seeing 8 in the output is seen to be the product of the probability 
of there being a measured 8 and the probability of the persistence of that  value in 
the output. The persistence of a value in the output is a function of the number of 
particles swept through the volume in the measurement time. I n  a stochastic flow, 
the number swept through in that time is conditionally dependent on the initial value 
of the velocity. 

In  order to compute exactly the probability density function (gs,(8)) for the 
output, the flow statistics must be known, at least, to second order in time. These 
statistics are rarely known, especially before a measurement is made. 

Define 7,, the velocity persistence time for the flow. It is the microscale for the 
turbulence. During this interval the velocity essentially stays w(0). 

If pa(v)7, 9 1, the number of particles swept through the volume during the 
persistence time is large, and the integral in (13) can be approximated by l/pa(w), 
since the integrand will be essentially zero for 7 > 7,. I n  this limit 

The probability of observing velocity 8 in the output is identical with the probability 
of there being a velocity 8 in the flow. The output is expected to be able to change 
faster than the flow. This is the unbiased limit. 

If p a ( w ) ~ ,  < 1 (the number of particle swept through in the persistence time is 
small) then the integrand can be approximated by 

In this limit, the time interval between particles is so large that there is no 
correlation between the velocity a t  the end of the interval and the initial measured 
velocity. For such large times, the expected volume swept out is proportional to the 
mean velocity (w). The probability density for the measured output will be given 

The statistics for the sample-and-hold processor become the same as those of an 
' individual-realization ' processor in the limit of a low measurement rate. 

High and low measurement rate is now understood to mean that the characteristic 
measurement time 7M = l / p ( a )  is small or large compared with the flow 
persistence time 7,. In  order to give some guidelines to the experimenter, we give 
below an approximate form for (gSH(8)). 

The integral in the expression (13) for (gsH(8)) is seen to be evaluated by a double 
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integral (see (14)). Such a computation should not be sensitive to  the precise form 
ofp(NI 7 , ~ ) .  

The assumed approximate behaviour of ( N ( 7 )  I w) is as follows: 

TI..- IG ---I V G  o d y  -. is assumed to stay ti up to the persistence time T,,  and then to change 
abruptly to the expected velocity (v). Any real turbulence flow will have the same 
asymptotes, but will change smoothly from one limit to the other around the 
time 7c. 

For 7 < 7, we shall assume that 

p ( N 7 ,  v) = W -  ( N ( 7 )  I v X ,  
and for 7 2 7, 

where (T& is the variance ( ( N -  ( N ( 7 )  1 ~ ) ) ~ ) .  The variance c& is approximated by an 
eddy-diffusivity formula (Hinze 1959), i.e. 

ck = ( (~-(W)l~))2)j  (18a) 

e& = 2p24  7,(7 - 7c), (186) 

where at is the variance of a. 
Using the above, (gsH(6)) is approximately given by 

If the temporal statistics of the flow are jointly Gaussian, (gSH(6)) can be computed 
numerically. The details of this computation are given in the appendix. Values of 
(gsH(6))/p(6) for the approximate formula (19) and the exact Gaussian computation 
are given in table 1. Note that the approximate formula closely follows the exact 
formula, differing a t  most by 6 yo. 

It is doubtful that differences between the approximate formula and the exact 
formula could be measured in an actual experiment especially if the mean or the 
variance of the velocity was measured. An estimate of the regimes of asymptotic 
behaviour can now be made : 

(20) 
7 

7M 
p(a)7, = 22 > 10. 

In  this regime the statistics are essentially unbiased : 

7 

7M 
p(a)7, = 2 < 0.1 

I n  this regime, the statistics are those of an ' individual-realization ' system. 
If only one component of the velocity is measured, the probability density for that 

component can be derived from (gSH(6)) by integrating over the other coordinates 
as follows: 

(gsd%))  = JJ<gsdfi)) d6,d@,, (22 1 
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Thl I T ,  
0.01 
0.1 
0.2 
0.5 
1 .o 
2.0 
5.0 

10.0 
100.0 

TMITC 

0.01 
0.1 
0.2 
0.5 
1 .o 
2.0 
5.0 

10.0 
100.0 

Equation (19) 

1.000 
1 .000 
1.000 
1.031 
1.125 
1.251 
1.379 
1.436 
1.493 

Equation (19) 

1 .ooo 
0.999 
0.969 
0.832 
0.709 
0.619 
0.551 
0.526 
0.503 

TABLE 1 

Gaussian 

1 .Ooo 
1 .000 
1.004 
1.032 
1.091 
1.182 
1.309 
1.382 
1.483 

Gaussian 

1.000 
0.9883 
0.906 
0.808 
0.725 
0.650 
0.579 
0.546 
0.506 

The form of the probability density for one component has the same form as that 
for the entire velocity vector. The expected value in the integrand has the same 
meaning as before except that it is now averaged over all y- and z-velocities. The limits 
for the asymptotic behaviours remain the same. 

2.3. The saturable system 
The saturated detector can be described as a detector with a dead time T ,  i.e. if the 
detector measures the velocity of a particle, at t = 0, i t  is first able to measure another 
particle after a time interval T has elapsed. If the time of arrival between the particles 
is much smaller than the dead time T ,  the flow velocity at  the output will be sampled 
at a rate which is essentially independent of the particle arrival rate. In order to 
describe the behaviour of the saturable system, the statistics of the measurement have 
to be found as in the case of the sample-and-hold processor. 

First, the probability for the acceptance of a particle in the output given its velocity 
will be calculated. 

The conditional probability p,(O, v, T )  that a particle is accepted at  the time t = 0, 
given the velocity v, is the probability that a particle arrives at t = 0 and that no 
particles have been accepted in the time interval T before t = 0, i.e. 
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A solution to this integral equation has been found to be (up to  a constant) 
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where (a( t ) Iv)  is the expected volume swept out in time t if the velocity at t = 0 is 
V .  

The function p,(O, v, T) is the expected number of measurements per second, in 
the output, if the velocity is v. To compute p,(O, v, T )  one needs to compute the 
expected number of particles swept out in the previous time T ,  if the velocity is now 
v. By normalizing the function prn(O, v, T), the statistics for the saturated detector 
are obtained : 

where the average is taken over a. 
Again, if the statistics of a are known to second order in time, the function 

(gsD(6)IT) can be computed. In  order to  examine the behaviour of (gSD(@)IT), the 
asymptotic behaviour will be computed and then an approximate form will be 
computed. I n  all the following examples the statistics will be assumed to  be 
stationary. 

Case I :  T < I - ,  

I n  this case we can perform the following approximations: 

PO PT 

p J  
(a(t’)l@)dt’ = p J  (a(t’)l@)dt’ x pa(@)T. 

-T 0 

Expanding the normalization factor in terms of a,/(a) and keeping terms up to 
second order, we get ( U , / ( U )  < 2 )  

(ssD(a)IT) = (29) 

where 7M = l / p ( a )  as before. Two asymptotes are possible for this case. 
(i) T $ I - ~ ;  the particle rate is high compared with the dead time T (saturated): 
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(ii) T 6 T~ ; low particle rate : 

405 

(31) 

The statistics are those of the individual realization system. 

Case I I :  T + T ,  

In  this case 
p j:, (a(t’) ( 8 )  dt’ = p (a(t’) 18) dt’ x p(a) T. (32) 

The statistics are those of the individual realization system independent of T ~ .  

A better ideal of the behaviour of the statistics of the saturable detector can be 
gained by computing an approximate form. Here we will again assume Gaussian 
statistics, i.e. 

pjoT(a(t’)Iw)dt’ = p(a) T+p(a-(a) )  JOT R(t’)dt’, (34) 

where again R(t) is the velocity autocorrelation function. The normalization is 
computed to second order in : 

where RT = joT R(t) dt’ 

The normal situation is one where T < 7,. Under these conditions RT = T. Thus 
normally (29) should be a useful approximation. 

If only one component of velocity is measured, the statistics are calculated as before 
by integrating over the non-measured coordinates (see (22)). When this is done, one 
gets the same form as (29) (or (35)) except that  8, is substituted for 8 and pa(8) is 
interpreted as the measurement rate for 8,. 

In  many systems i t  is reasonable to assume that a(v,) is proportional to  w,, i.e. 

4 v x )  = Mu, I .  (36) 

Using (36) and (29), an approximation to the measured mean velocity may be 
computed if v, is strictly positive. Again keeping terms to second order in a,J(v,), 
one gets 

where TM = l / p (  1 Aw,J ). This equation predicts the smooth transition from a biased 
estimate to an unbiased estimate of (8,) as the ratio of the dead time to the mean 
time between particles increases. Recall this formula was derived assuming that the 
dead time is small compared to the flow correlation time. 

In  a similar fashion, an expression for the turbulence intensity may be computed. 
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The parameter a:, is the measured variance of the flow. Again there is a smooth 
transition from a biased to an unbiased estimate as TITM goes to infinity. 

Figures 1 and 2 show data taken by Stevenson et al. (1980), where the flow was 
kept constant while the seeding density was changed. The maximum data rate that 
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the system can record is denoted by the arrow. This value is taken as 1/T. Note that, 
as predicted, the bias decreases as the particle rate passes through the maximum 
recording rate. The solid line in figure 1 is equation (37) plotted using the ratio of 
the data rate to the maximum rate for TIT,. The values of c&J(u.J2 were estimated 
from the apparent asymptotes on the figure. Although (37) deviates from the data 
at some points, the overall agreement is quite gratifying. 

Figure 2 is a plot of the measured turbulence intensity as a function of the data 
rate. The solid line is equation (38). Although the fit is not perfect, the trends are 
correct - the apparent turbulence intensity increases to an apparent asymptote as 
the data rate exceeds the maximum sampling rate. 

3. Discussion 
The calculations were performed for the full velocity vector to emphasize the 

three-dimensional nature of the problem. For instance, if one is only measuring a 
single component of velocity, its measurement rate may be strongly influenced by 
the other velocity components. This is especially true if the component measured is 
transverse to the main flow direction. Under these circumstances, the measurement 
rate need not be proportional to the measured velocity component. 

The quantity pa(8) (or pa(wu,)) can be interpreted as the mean measurement rate 
corresponding to the velocity 8. I11 $2 it was referred to as the mean particle arrival 
rate corresponding to the velocity 8. The mean measurement rate for velocity 8 can 
be influenced by non-uniform seeding as well as the other factors referred to above. 
A close examination will reveal that the derivations were performed assuming only 
that the number of events in the output of the initial processor in a small time interval 
At( < 7,) is a random variable conditioned only by the velocity. This can be true even 
if there is a correlation between the particle density and the velocity or if the initial 
processor randomly misses some particles. 

If the measurement rate fulfils the above assumption, the formulae derived above 
can be rewritten by deleting p and substituting the measurement rate r (8 )  for a(4). 
The variable N(7)  is to be interpreted as the mean number of measurements in time 
7 .  The variables r (u)  (or r(2r.J) and N ( 7 )  are measurable (Durso, Laker and Whitelaw 
1980), and thus the experimentalists can determine if his measurements fulfil the 
conditions of this work. Further, the parameter 7, is the correlation time for r(w), 
which is also measurable. 

We know of one situation where the assumption of the randomness of the initial 
processor output fails. It is possible to arrange the geometry of a fringe system so 
that some counters will give multiple outputs for a single particle. This is especially 
true if an optical frequency shifter is used. Under these circumstances the initial 
processor output can occur in clusters with a well-defined spacing between events in 
the cluster, determined by the counter reset time and the particle velocity. The 
number of counts in some time intervals is no longer a random variable. The cluster 
can persist for the length of time the particle remains in the fringe region. One can 
easily observe this behaviour if a histogram is made of the measurement interarrival 
times. Cluster events will show up as a sharp peak, with an interarrival time 
approximately the inverse of the counter reset time. 

The duration of the cluster is usually small compared with the flow correlation time. 
In  this case, the output of the sample-and-hold processor will not be influenced by 
the cluster event since the velocity will not change significantly during its duration. 
Similarly, if a dead time T that is longer than the cluster duration is introduced, the 
output will be insensitive to the clusters. 
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Factors other than those mentioned here may affect the measurement rate as a 
function of velocity. Therefore we recommend that experimentalists measure the rate 
versus velocity. Failure to do this may result in incorrect assumptions about the 
measurement statistics. 

The phrase ' individual-realization ' statistics is now understood to mean that the 
output probability density is weighted by the measurement rate. The bias in the 
measured mean velocity, predicted by McLaughlin & Teidermann (1973), is the 
square of the turbulence intensity. For a system with 10% turbulence, this only 
amounts to  a 1 yo change. Obviously, a measurement that attempts to  measure the 
bias ought to be a t  least that  accurate. 

Without considering the bias, there are two major contributions to the estimate 
of a mean velocity in a fluctuating flow : 

(i) the error per measurement (denoted by a,) ; 
(ii) the fact that  the flow fluctuates. 

Since the variance of the estimate of the mean decreases as the number of independent 
samples of the mean velocity, the total measurement span compared with the flow 
correlation time is important. Measurements taken within the correlation time are 
not independent estimates of the mean. An estimate of the measurement variance 
of the mean, a&,, can be derived (Saleh 1978), viz 

where r ,  is the flow correlation time, T, is the measurement interval, a:x is the 
variance of the velocity and T M  is the inverse of the particle rate, as before. The 
measurement error aM is assumed to be independent of the velocity fluctuation. 

Usually aM is very small and can be neglected. The number of correlation times 
measured can easily be the main source of uncertainty in the estimate of the mean. 
Again using the example of 10 % turbulence level, the measurement needs to extend 
over a t  least 200 correlation times. To get unequivocal evidence of bias, the error 
ought to  be much smaller than the expected bias, so that 10000 correlation times 
may be a more realistic criterion. 

The turbulence intensity levels in the work reported by Stevenson et al. (1980) were 
very high - sometimes around 30 %. The analysis was performed by taking a fixed 
number of samples while varying the particle density. Thus, as the particle rate 
increases, the measurement interval decreases. Therefore the squared error in the 
estimate of the mean should increase approximately as the inverse of the stored 
particle rate. Since a counter typically gives errors of less than 0.5 yo, and their data 
indicates errors on the order of 3-5 yo, the cause could well be that not enough 
independent samples of the mean were taken. I n  fact, we know of no paper in the 
literature on bias errors where the effect of flow correlation time on the measurement 
accuracy was even mentioned. 

The squared error in the estimate of the velocity variance decreases even more 
slowly as a function of the number of correlation times measured. It can be shown 
to decrease roughly as the square root of the number of correlation times. Thus the 
errors in the estimate of the turbulence intensity should be larger than those in the 
estimate of the mean. This is readily apparent in the data shown. 
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4. Conclusions 
For both kinds of systems, sample-and-hold and saturable, the output statistics 

are a function of the particle arrival rate and the flow correlation time. 
The statistics of the sample-and -hold processor are controlled by the dimensionless 

parameter r M / 7 , ,  the ratio of the mean measurement interarrival time to  the flow 
correlation time. If this parameter is greater than 10, the output velocity statistics 
are the same as the flow statistics at the measurement region. If the parameter is 
less than 0.1, the output statistics are those of the individual realization case. 

The statistics of the saturable system are controlled by rM/rc  and T / r c ,  the ratio 
of the dead time to the flow correlation time. The asymptotes are 

(i) T/7c $ 1, the output statistics remain those of the individual realization system 
no matter what the value of rM/rc ; 

(ii) TIT, < 1, the output statistics are those of the flow if rM/rc < 0.1, and 
individual realization statistics if 7 M / 7 c  > 10. 

Since there has been little rigorous discussion of any of these parameters in the 
literature, i t  is not surprising that confusing experimental results have been attained. 

The results derived here show that conditions are attainable where the output 
statistics are essentially identical to those of the flow. Aside from reducing the post- 
detection computation required, this result may be useful in flows where the particle 
density and velocity are correlated. This may occur near the edge of a jet where the 
seeding is not the same in the entrained fluid as in the jet core. If the particle rate 
and detector parameters are correctly set, the effect of non-uniform seeding may be 
eliminated. 

The statistics of velocity detection in rotating machinery is different from that 
discussed in this paper. We hope to present results for those systems in a subsequent 
paper. 
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Appendix 
Let { t i }  be a set of N times and let t j  > ti i f j  > i. Further let x(ti) be a random 

variable of zero mean. The set of random variables sfti) is said to be Gaussian if their 
joint probability density is given by an equation of the form 

where {z(ti)} is the column matrix of variables ~ ( 1 ~ )  and ( ~ ( 1 ~ ) ) ’  is its transpose, and 
p is the matrix whose elements are given bypij = (z( t i )  z(t i))  (Saleh 1978). The matrix 
p-l is its inverse and is its determinant. If further the system is stationary, 

pij = ( 4 t i ) 4 t j D  = (z2) Rvj- t i ) ,  (A 2) 

where R( ) is the normalized autocorrelation function of x( t ) .  Without loss of 
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generality, we can write 

R. V .  Edwards and A .  8. Jensen 

( 4 4 )  4tj)l+d) = (X(td2R(t+ti). 

( a ( t ) I ~ )  = aR(t)+(a) ( I - R ( t ) ) .  

(A 3) 

(A 4) 

Let a- (a) = x. From the above we get 

Thus 

(N(7) Iv)  = p a r R ( t ) d t + p ( a )  0 l (l-B(t))dt. (A 5 )  

Further, 
4 7  = ( ( N ( 7 )  - ( W 7 )  I V ) l 2 )  

= p2(a - ( a))2 [ [ (7 - t )  R(t) dt - (J: R(t) dt)']. 
0 

(A 6) 

The form of the autocorrelation is arbitrary so long as it is a symmetric function 
of time and is 1 at 7 = 0. Here we choose 

With this definition, we get 

= 4 2  7,, (the microscale), 

7E = Jam R(t) dt = ( + ~ ) 4 7 ~  (the macroscale). 

Using 70 = l / g  7,, we can now construct the function p(N17, v): 

The integral 
Jam ( ecNb) I v) d7 

can now be computed numerically after some algebraic manipulation : 

(A 9) 
Very small time steps must be taken for the small values of 7 because of the error 

function terms. Otherwise, the numerical integration is straightforward. Typical 
results of the integration (after multiplying by pa) are given in table 1. 
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